Standard library header <memory>
From cppreference.net
此头文件属于 动态内存管理 库的一部分。
Includes |
|
|
(C++20)
|
Three-way comparison operator support |
Classes |
|
Pointer traits |
|
|
(C++11)
|
provides information about pointer-like types
(class template) |
Garbage collector support |
|
|
(C++11)
(removed in C++23)
|
lists pointer safety models
(enum) |
Allocators |
|
|
the default allocator
(class template) |
|
|
(C++11)
|
provides information about allocator types
(class template) |
|
(C++23)
|
records the address and the actual size of storage allocated by
allocate_at_least
(class template) |
|
(C++11)
|
checks if the specified type supports uses-allocator construction
(class template) |
Uninitialized storage |
|
|
(deprecated in C++17)
(removed in C++20)
|
an iterator that allows standard algorithms to store results in uninitialized memory
(class template) |
Smart pointers |
|
|
(C++11)
|
smart pointer with unique object ownership semantics
(class template) |
|
(C++11)
|
smart pointer with shared object ownership semantics
(class template) |
|
(C++11)
|
weak reference to an object managed by
std::shared_ptr
(class template) |
|
(deprecated in C++11)
(removed in C++17)
|
smart pointer with strict object ownership semantics
(class template) |
Smart pointer adaptors |
|
|
(C++23)
|
interoperates with foreign pointer setters and resets a smart pointer on destruction
(class template) |
|
(C++23)
|
interoperates with foreign pointer setters, obtains the initial pointer value from a smart pointer, and resets it on destruction
(class template) |
Types for composite class design |
|
|
(C++26)
|
a wrapper containing dynamically-allocated object with value-like semantics
(class template) |
|
(C++26)
|
a polymorphic wrapper containing dynamically-allocated object with value-like semantics
(class template) |
Helper classes |
|
|
(C++20)
|
atomic shared pointer
(class template specialization) |
|
(C++20)
|
atomic weak pointer
(class template specialization) |
|
(C++11)
|
provides mixed-type owner-based ordering of shared and weak pointers
(class template) |
|
(C++26)
|
provides owner-based hashing for shared and weak pointers
(class) |
|
(C++26)
|
provides mixed-type owner-based equal comparisons of shared and weak pointers
(class) |
|
(C++11)
|
allows an object to create a
shared_ptr
referring to itself
(class template) |
|
(C++11)
|
exception thrown when accessing a
weak_ptr
which refers to already destroyed object
(class) |
|
(C++11)
|
default deleter for
unique_ptr
(class template) |
|
(C++11)
|
hash support for
std::unique_ptr
(class template specialization) |
|
(C++11)
|
hash support for
std::shared_ptr
(class template specialization) |
|
(C++26)
|
hash support for
std::indirect
(class template specialization) |
Forward declarations |
|
|
Defined in header
<functional>
|
|
|
(C++11)
|
hash function object
(class template) |
|
Defined in header
<atomic>
|
|
|
(C++11)
|
atomic class template and specializations for bool, integral,
floating-point,
(since C++20)
and pointer types
(class template) |
Tags |
|
|
(C++11)
|
a tag used to select allocator-aware constructors
(tag) |
Functions |
|
Uses-allocator construction |
|
|
(C++20)
|
prepares the argument list matching the flavor of uses-allocator construction required by the given type
(function template) |
|
(C++20)
|
creates an object of the given type by means of uses-allocator construction
(function template) |
|
creates an object of the given type at specified memory location by means of uses-allocator construction
(function template) |
|
Miscellaneous |
|
|
(C++20)
|
obtains a raw pointer from a pointer-like type
(function template) |
|
(C++11)
|
obtains actual address of an object, even if the
&
operator is overloaded
(function template) |
|
(C++11)
|
aligns a pointer in a buffer
(function) |
|
(C++20)
|
informs the compiler that a pointer is aligned
(function template) |
|
(C++26)
|
checks whether the pointer points to an object whose alignment has at least the given value
(function template) |
Explicit lifetime management |
|
|
implicitly creates objects in given storage with the object representation reused
(function template) |
|
Garbage collector support |
|
|
(C++11)
(removed in C++23)
|
declares that an object can not be recycled
(function) |
|
(C++11)
(removed in C++23)
|
declares that an object can be recycled
(function template) |
|
(C++11)
(removed in C++23)
|
declares that a memory area does not contain traceable pointers
(function) |
|
(C++11)
(removed in C++23)
|
cancels the effect of
std::declare_no_pointers
(function) |
|
(C++11)
(removed in C++23)
|
returns the current pointer safety model
(function) |
Uninitialized storage |
|
|
copies a range of objects to an uninitialized area of memory
(function template) |
|
|
(C++11)
|
copies a number of objects to an uninitialized area of memory
(function template) |
|
copies an object to an uninitialized area of memory, defined by a range
(function template) |
|
|
copies an object to an uninitialized area of memory, defined by a start and a count
(function template) |
|
|
(C++17)
|
moves a range of objects to an uninitialized area of memory
(function template) |
|
(C++17)
|
moves a number of objects to an uninitialized area of memory
(function template) |
|
(C++17)
|
constructs objects by
default-initialization
in an uninitialized area of memory, defined by a range
(function template) |
|
constructs objects by
default-initialization
in an uninitialized area of memory, defined by a start and a count
(function template) |
|
|
(C++17)
|
constructs objects by
value-initialization
in an uninitialized area of memory, defined by a range
(function template) |
|
(C++17)
|
constructs objects by
value-initialization
in an uninitialized area of memory, defined by a start and a count
(function template) |
|
(C++20)
|
creates an object at a given address
(function template) |
|
(C++17)
|
destroys an object at a given address
(function template) |
|
(C++17)
|
destroys a range of objects
(function template) |
|
(C++17)
|
destroys a number of objects in a range
(function template) |
|
(deprecated in C++17)
(removed in C++20)
|
obtains uninitialized storage
(function template) |
|
(deprecated in C++17)
(removed in C++20)
|
frees uninitialized storage
(function template) |
Smart pointer non-member operations |
|
|
(C++14)
(C++20)
|
creates a unique pointer that manages a new object
(function template) |
|
(removed in C++20)
(C++20)
|
compares to another
unique_ptr
or with
nullptr
(function template) |
|
creates a shared pointer that manages a new object
(function template) |
|
|
creates a shared pointer that manages a new object allocated using an allocator
(function template) |
|
|
applies
static_cast
,
dynamic_cast
,
const_cast
, or
reinterpret_cast
to the stored pointer
(function template) |
|
|
returns the deleter of specified type, if owned
(function template) |
|
|
(removed in C++20)
(removed in C++20)
(removed in C++20)
(removed in C++20)
(removed in C++20)
(C++20)
|
compares with another
shared_ptr
or with
nullptr
(function template) |
|
outputs the value of the stored pointer to an output stream
(function template) |
|
|
(C++20)
|
outputs the value of the managed pointer to an output stream
(function template) |
|
(C++11)
|
specializes the
std::swap
algorithm
(function template) |
|
(C++11)
|
specializes the
std::swap
algorithm
(function template) |
|
(C++11)
|
specializes the
std::swap
algorithm
(function template) |
Smart pointer adaptor creation |
|
|
(C++23)
|
creates an
out_ptr_t
with an associated smart pointer and resetting arguments
(function template) |
|
(C++23)
|
creates an
inout_ptr_t
with an associated smart pointer and resetting arguments
(function template) |
为
std::shared_ptr
特化的原子操作
(函数模板) |
函数式实体 |
|
|
定义于命名空间
std::ranges
|
|
未初始化存储 |
|
|
(C++20)
|
复制对象范围到未初始化的内存区域
(算法函数对象) |
|
(C++20)
|
复制指定数量对象到未初始化的内存区域
(算法函数对象) |
|
(C++20)
|
复制对象到由范围定义的未初始化内存区域
(算法函数对象) |
|
(C++20)
|
复制对象到由起始点和计数定义的未初始化内存区域
(算法函数对象) |
|
(C++20)
|
移动对象范围到未初始化的内存区域
(算法函数对象) |
|
(C++20)
|
移动指定数量对象到未初始化的内存区域
(算法函数对象) |
|
通过
默认初始化
在由范围定义的未初始化内存区域中构造对象
(算法函数对象) |
|
|
通过
默认初始化
在由起始点和计数定义的未初始化内存区域中构造对象
(算法函数对象) |
|
|
通过
值初始化
在由范围定义的未初始化内存区域中构造对象
(算法函数对象) |
|
|
通过
值初始化
在由起始点和计数定义的未初始化内存区域中构造对象
(算法函数对象) |
|
|
(C++20)
|
在给定地址创建对象
(算法函数对象) |
|
(C++20)
|
销毁给定地址的对象
(算法函数对象) |
|
(C++20)
|
销毁对象范围
(算法函数对象) |
|
(C++20)
|
销毁范围内的指定数量对象
(算法函数对象) |
概要
#include <compare> namespace std { // pointer Traits template<class Ptr> struct pointer_traits; // freestanding template<class T> struct pointer_traits<T*>; // freestanding // pointer conversion template<class T> constexpr T* to_address(T* p) noexcept; // freestanding template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept; // freestanding // pointer alignment void* align(size_t alignment, size_t size, void*& ptr, size_t& space); // freestanding template<size_t N, class T> constexpr T* assume_aligned(T* ptr); // freestanding template<size_t Alignment, class T> bool is_sufficiently_aligned(T* ptr); // explicit lifetime management template<class T> T* start_lifetime_as(void* p) noexcept; // freestanding template<class T> const T* start_lifetime_as(const void* p) noexcept; // freestanding template<class T> volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding template<class T> const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding template<class T> T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding template<class T> const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding template<class T> volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding template<class T> const volatile T* start_lifetime_as_array(const volatile void* p, // freestanding size_t n) noexcept; template<class T> T* trivially_relocate(T* first, T* last, T* result); // freestanding template<class T> constexpr T* relocate(T* first, T* last, T* result); // freestanding // allocator argument tag struct allocator_arg_t { explicit allocator_arg_t() = default; }; // freestanding inline constexpr allocator_arg_t allocator_arg{}; // freestanding // uses_allocator template<class T, class Alloc> struct uses_allocator; // freestanding // uses_allocator template<class T, class Alloc> constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; // freestanding // uses-allocator construction template<class T, class Alloc, class... Args> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding Args&&... args) noexcept; template<class T, class Alloc, class Tuple1, class Tuple2> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding piecewise_construct_t, Tuple1&& x, Tuple2&& y) noexcept; template<class T, class Alloc> constexpr auto uses_allocator_construction_args( const Alloc& alloc) noexcept; // freestanding template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding U&& u, V&& v) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding pair<U, V>& pr) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding const pair<U, V>& pr) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding pair<U, V>&& pr) noexcept; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding const pair<U, V>&& pr) noexcept; template<class T, class Alloc, /*pair-like*/ P> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding P&& p) noexcept; template<class T, class Alloc, class U> constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding U&& u) noexcept; template<class T, class Alloc, class... Args> constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args); // freestanding template<class T, class Alloc, class... Args> constexpr T* uninitialized_construct_using_allocator(T* p, // freestanding const Alloc& alloc, Args&&... args); // allocator Traits template<class Alloc> struct allocator_traits; // freestanding template<class Pointer, class SizeType = size_t> struct allocation_result { // freestanding Pointer ptr; SizeType count; }; // the default allocator template<class T> class allocator; template<class T, class U> constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept; // addressof template<class T> constexpr T* addressof(T& r) noexcept; // freestanding template<class T> const T* addressof(const T&&) = delete; // freestanding // specialized algorithms // special memory concepts template<class I> concept no-throw-input-iterator = /* see description */; // exposition-only template<class I> concept no-throw-forward-iterator = /* see description */; // exposition-only template<class S, class I> concept no-throw-sentinel-for = /* see description */; // exposition-only template<class R> concept no-throw-input-range = /* see description */; // exposition-only template<class R> concept no-throw-forward-range = /* see description */; // exposition-only template<class NoThrowForwardIter> constexpr void uninitialized_default_construct(NoThrowForwardIter first, // freestanding NoThrowForwardIter last); template<class ExecutionPolicy, class NoThrowForwardIter> void uninitialized_default_construct(ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, NoThrowForwardIter last); template<class NoThrowForwardIter, class Size> constexpr NoThrowForwardIter uninitialized_default_construct_n(NoThrowForwardIter first, Size n); // freestanding template<class ExecutionPolicy, class NoThrowForwardIter, class Size> NoThrowForwardIter uninitialized_default_construct_n( ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, Size n); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S> requires default_initializable<iter_value_t<I>> constexpr I uninitialized_default_construct(I first, S last); // freestanding template<no-throw-forward-range R> requires default_initializable<range_value_t<R>> constexpr borrowed_iterator_t<R> uninitialized_default_construct( R&& r); // freestanding template<no-throw-forward-iterator I> requires default_initializable<iter_value_t<I>> constexpr I uninitialized_default_construct_n(I first, // freestanding iter_difference_t<I> n); } template<class NoThrowForwardIter> constexpr void uninitialized_value_construct(NoThrowForwardIter first, // freestanding NoThrowForwardIter last); template<class ExecutionPolicy, class NoThrowForwardIter> void uninitialized_value_construct(ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, NoThrowForwardIter last); template<class NoThrowForwardIter, class Size> constexpr NoThrowForwardIter uninitialized_value_construct_n(NoThrowForwardIter first, Size n); // freestanding template<class ExecutionPolicy, class NoThrowForwardIter, class Size> NoThrowForwardIter uninitialized_value_construct_n( ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, Size n); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S> requires default_initializable<iter_value_t<I>> constexpr I uninitialized_value_construct(I first, S last); // freestanding template<no-throw-forward-range R> requires default_initializable<range_value_t<R>> constexpr borrowed_iterator_t<R> uninitialized_value_construct(R&& r); // freestanding template<no-throw-forward-iterator I> requires default_initializable<iter_value_t<I>> constexpr I uninitialized_value_construct_n(I first, // freestanding iter_difference_t<I> n); } template<class InputIter, class NoThrowForwardIter> constexpr NoThrowForwardIter uninitialized_copy(InputIter first, // freestanding InputIter last, NoThrowForwardIter result); template<class ExecutionPolicy, class ForwardIter, class NoThrowForwardIter> NoThrowForwardIter uninitialized_copy(ExecutionPolicy&& exec, // freestanding-deleted, ForwardIter first, ForwardIter last, NoThrowForwardIter result); template<class InputIter, class Size, class NoThrowForwardIter> constexpr NoThrowForwardIter uninitialized_copy_n(InputIter first, // freestanding Size n, NoThrowForwardIter result); template<class ExecutionPolicy, class ForwardIter, class Size, class NoThrowForwardIter> NoThrowForwardIter uninitialized_copy_n(ExecutionPolicy&& exec, // freestanding-deleted, ForwardIter first, Size n, NoThrowForwardIter result); namespace ranges { template<class I, class O> using uninitialized_copy_result = in_out_result<I, O>; // freestanding template<input_iterator I, sentinel_for<I> S1, no-throw-forward-iterator O, no-throw-sentinel-for<O> S2> requires constructible_from<iter_value_t<O>, iter_reference_t<I>> constexpr uninitialized_copy_result<I, O> uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding template<input_range IR, no-throw-forward-range OR> requires constructible_from<range_value_t<OR>, range_reference_t<IR>> constexpr uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>> uninitialized_copy(IR&& in_range, OR&& out_range); // freestanding template<class I, class O> using uninitialized_copy_n_result = in_out_result<I, O>; // freestanding template<input_iterator I, no-throw-forward-iterator O, no-throw-sentinel-for<O> S> requires constructible_from<iter_value_t<O>, iter_reference_t<I>> constexpr uninitialized_copy_n_result<I, O> uninitialized_copy_n( I ifirst, iter_difference_t<I> n, // freestanding O ofirst, S olast); } template<class InputIter, class NoThrowForwardIter> constexpr NoThrowForwardIter uninitialized_move(InputIter first, // freestanding InputIter last, NoThrowForwardIter result); template<class ExecutionPolicy, class ForwardIter, class NoThrowForwardIter> NoThrowForwardIter uninitialized_move(ExecutionPolicy&& exec, // freestanding-deleted, ForwardIter first, ForwardIter last, NoThrowForwardIter result); template<class InputIter, class Size, class NoThrowForwardIter> constexpr pair<InputIter, NoThrowForwardIter> uninitialized_move_n( InputIter first, Size n, // freestanding NoThrowForwardIter result); template<class ExecutionPolicy, class ForwardIter, class Size, class NoThrowForwardIter> pair<ForwardIter, NoThrowForwardIter> uninitialized_move_n( ExecutionPolicy&& exec, // freestanding-deleted, ForwardIter first, Size n, NoThrowForwardIter result); namespace ranges { template<class I, class O> using uninitialized_move_result = in_out_result<I, O>; // freestanding template<input_iterator I, sentinel_for<I> S1, no-throw-forward-iterator O, no-throw-sentinel-for<O> S2> requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>> constexpr uninitialized_move_result<I, O> uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding template<input_range IR, no-throw-forward-range OR> requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>> constexpr uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>> uninitialized_move(IR&& in_range, OR&& out_range); // freestanding template<class I, class O> using uninitialized_move_n_result = in_out_result<I, O>; // freestanding template<input_iterator I, no-throw-forward-iterator O, no-throw-sentinel-for<O> S> requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>> constexpr uninitialized_move_n_result<I, O> uninitialized_move_n( I ifirst, iter_difference_t<I> n, // freestanding O ofirst, S olast); } template<class NoThrowForwardIter, class T> constexpr void uninitialized_fill(NoThrowForwardIter first, // freestanding NoThrowForwardIter last, const T& x); template<class ExecutionPolicy, class NoThrowForwardIter, class T> void uninitialized_fill(ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, NoThrowForwardIter last, const T& x); template<class NoThrowForwardIter, class Size, class T> constexpr NoThrowForwardIter uninitialized_fill_n(NoThrowForwardIter first, Size n, const T& x); // freestanding template<class ExecutionPolicy, class NoThrowForwardIter, class Size, class T> NoThrowForwardIter uninitialized_fill_n(ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, Size n, const T& x); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S, class T> requires constructible_from<iter_value_t<I>, const T&> constexpr I uninitialized_fill(I first, S last, const T& x); // freestanding template<no-throw-forward-range R, class T> requires constructible_from<range_value_t<R>, const T&> constexpr borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x); // freestanding template<no-throw-forward-iterator I, class T> requires constructible_from<iter_value_t<I>, const T&> constexpr I uninitialized_fill_n(I first, // freestanding iter_difference_t<I> n, const T& x); } // construct_at template<class T, class... Args> constexpr T* construct_at(T* location, Args&&... args); // freestanding namespace ranges { template<class T, class... Args> constexpr T* construct_at(T* location, Args&&... args); // freestanding } // destroy template<class T> constexpr void destroy_at(T* location); // freestanding template<class NoThrowForwardIter> constexpr void destroy(NoThrowForwardIter first, // freestanding NoThrowForwardIter last); template<class ExecutionPolicy, class NoThrowForwardIter> void destroy(ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, NoThrowForwardIter last); template<class NoThrowForwardIter, class Size> constexpr NoThrowForwardIter destroy_n(NoThrowForwardIter first, // freestanding Size n); template<class ExecutionPolicy, class NoThrowForwardIter, class Size> NoThrowForwardIter destroy_n(ExecutionPolicy&& exec, // freestanding-deleted, NoThrowForwardIter first, Size n); namespace ranges { template<destructible T> constexpr void destroy_at(T* location) noexcept; // freestanding template<no-throw-input-iterator I, no-throw-sentinel-for<I> S> requires destructible<iter_value_t<I>> constexpr I destroy(I first, S last) noexcept; // freestanding template<no-throw-input-range R> requires destructible<range_value_t<R>> constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept; // freestanding template<no-throw-input-iterator I> requires destructible<iter_value_t<I>> constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept; // freestanding } // class template unique_ptr template<class T> struct default_delete; // freestanding template<class T> struct default_delete<T[]>; // freestanding template<class T, class D = default_delete<T>> class unique_ptr; // freestanding template<class T, class D> class unique_ptr<T[], D>; // freestanding template<class T, class... Args> constexpr unique_ptr<T> make_unique(Args&&... args); // T is not array template<class T> constexpr unique_ptr<T> make_unique(size_t n); // T is U[] template<class T, class... Args> /* unspecified */ make_unique(Args&&...) = delete; // T is U[N] template<class T> constexpr unique_ptr<T> make_unique_for_overwrite(); // T is not array template<class T> constexpr unique_ptr<T> make_unique_for_overwrite(size_t n); // T is U[] template<class T, class... Args> /* unspecified */ make_unique_for_overwrite(Args&&...) = delete; // T is U[N] template<class T, class D> constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; // freestanding template<class T1, class D1, class T2, class D2> constexpr bool operator==(const unique_ptr<T1, D1>& x, // freestanding const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding template<class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding template<class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding template<class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding template<class T1, class D1, class T2, class D2> requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer> compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer> operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding template<class T, class D> constexpr bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; // freestanding template<class T, class D> constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t); // freestanding template<class T, class D> constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& y); // freestanding template<class T, class D> constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t); // freestanding template<class T, class D> constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& y); // freestanding template<class T, class D> constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t); // freestanding template<class T, class D> constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& y); // freestanding template<class T, class D> constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t); // freestanding template<class T, class D> constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // freestanding template<class T, class D> requires three_way_comparable<typename unique_ptr<T, D>::pointer> constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer> operator<=>( const unique_ptr<T, D>& x, nullptr_t); // freestanding template<class E, class T, class Y, class D> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p); // class bad_weak_ptr class bad_weak_ptr; // class template shared_ptr template<class T> class shared_ptr; // shared_ptr creation template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args); // T is not array template<class T, class A, class... Args> shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array template<class T> shared_ptr<T> make_shared(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[] template<class T> shared_ptr<T> make_shared(); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a); // T is U[N] template<class T> shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N, const remove_extent_t<T>& u); // T is U[] template<class T> shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N] template<class T> shared_ptr<T> make_shared_for_overwrite(); // T is not U[] template<class T, class A> shared_ptr<T> allocate_shared_for_overwrite(const A& a); // T is not U[] template<class T> shared_ptr<T> make_shared_for_overwrite(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // T is U[] // shared_ptr comparisons template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept; // shared_ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // shared_ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept; // shared_ptr get_deleter template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept; // shared_ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p); // class template weak_ptr template<class T> class weak_ptr; // weak_ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // class template owner_less template<class T = void> struct owner_less; // struct owner_hash struct owner_hash; // struct owner_equal struct owner_equal; // class template enable_shared_from_this template<class T> class enable_shared_from_this; // hash support template<class T> struct hash; // freestanding template<class T, class D> struct hash<unique_ptr<T, D>>; // freestanding template<class T> struct hash<shared_ptr<T>>; // atomic smart pointers template<class T> struct atomic; // freestanding template<class T> struct atomic<shared_ptr<T>>; template<class T> struct atomic<weak_ptr<T>>; // class template out_ptr_t template<class Smart, class Pointer, class... Args> class out_ptr_t; // freestanding // function template out_ptr template<class Pointer = void, class Smart, class... Args> auto out_ptr(Smart& s, Args&&... args); // freestanding // class template inout_ptr_t template<class Smart, class Pointer, class... Args> class inout_ptr_t; // freestanding // function template inout_ptr template<class Pointer = void, class Smart, class... Args> auto inout_ptr(Smart& s, Args&&... args); // freestanding // class template indirect template<class T, class Allocator = allocator<T>> class indirect; // hash support template<class T, class Alloc> struct hash<indirect<T, Alloc>>; // class template polymorphic template<class T, class Allocator = allocator<T>> class polymorphic; namespace pmr { template<class T> using indirect = indirect<T, polymorphic_allocator<T>>; template<class T> using polymorphic = polymorphic<T, polymorphic_allocator<T>>; } }
辅助概念
注意: 这些名称 仅用于说明目的,不属于接口组成部分。
template<class I> concept no-throw-input-iterator = // 仅用于说明 input_iterator<I> && is_lvalue_reference_v<iter_reference_t<I>> && same_as<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>; template<class S, class I> concept no-throw-sentinel-for = sentinel_for<S, I>; // 仅用于说明 template<class R> concept no-throw-input-range = // 仅用于说明 ranges::range<R> && no-throw-input-iterator<ranges::iterator_t<R>> && no-throw-sentinel-for<ranges::sentinel_t<R>, ranges::iterator_t<R>>; template<class I> concept no-throw-forward-iterator = // 仅用于说明 no-throw-input-iterator<I> && forward_iterator<I> && no-throw-sentinel-for<I, I>; template<class R> concept no-throw-forward-range = // 仅用于说明 no-throw-input-range<R> && no-throw-forward-iterator<ranges::iterator_t<R>>;
类模板 std::pointer_traits
namespace std { template<class Ptr> struct pointer_traits { /* 详见描述 */; }; template<class T> struct pointer_traits<T*> { using pointer = T*; using element_type = T; using difference_type = ptrdiff_t; template<class U> using rebind = U*; static constexpr pointer pointer_to(/* 详见描述 */ r) noexcept; }; }
类 std::allocator_arg_t
namespace std { struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; }
类模板 std::allocator_traits
namespace std { template<class Alloc> struct allocator_traits { using allocator_type = Alloc; using value_type = typename Alloc::value_type; using pointer = /* 详见描述 */; using const_pointer = /* 详见描述 */; using void_pointer = /* 详见描述 */; using const_void_pointer = /* 详见描述 */; using difference_type = /* 详见描述 */; using size_type = /* 详见描述 */; using propagate_on_container_copy_assignment = /* 详见描述 */; using propagate_on_container_move_assignment = /* 详见描述 */; using propagate_on_container_swap = /* 详见描述 */; using is_always_equal = /* 详见描述 */; template<class T> using rebind_alloc = /* 详见描述 */; template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>; static constexpr pointer allocate(Alloc& a, size_type n); static constexpr pointer allocate(Alloc& a, size_type n, const_void_pointer hint); static constexpr allocation_result<pointer, size_type> allocate_at_least(Alloc& a, size_type n); static constexpr void deallocate(Alloc& a, pointer p, size_type n); template<class T, class... Args> static constexpr void construct(Alloc& a, T* p, Args&&... args); template<class T> static constexpr void destroy(Alloc& a, T* p); static constexpr size_type max_size(const Alloc& a) noexcept; static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs); }; }
类模板 std::allocator
namespace std { template<class T> class allocator { public: using value_type = T; using size_type = size_t; using difference_type = ptrdiff_t; using propagate_on_container_move_assignment = true_type; constexpr allocator() noexcept; constexpr allocator(const allocator&) noexcept; template<class U> constexpr allocator(const allocator<U>&) noexcept; constexpr ~allocator(); constexpr allocator& operator=(const allocator&) = default; constexpr T* allocate(size_t n); constexpr allocation_result<T*> allocate_at_least(size_t n); constexpr void deallocate(T* p, size_t n); }; }
类模板 std::default_delete
namespace std { template<class T> struct default_delete { constexpr default_delete() noexcept = default; template<class U> constexpr default_delete(const default_delete<U>&) noexcept; constexpr void operator()(T*) const; }; template<class T> struct default_delete<T[]> { constexpr default_delete() noexcept = default; template<class U> constexpr default_delete(const default_delete<U[]>&) noexcept; template<class U> constexpr void operator()(U* ptr) const; }; }
类模板 std::unique_ptr
namespace std { template<class T, class D = default_delete<T>> class unique_ptr { public: using pointer = /* 见描述 */; using element_type = T; using deleter_type = D; // 构造函数 constexpr unique_ptr() noexcept; constexpr explicit unique_ptr(type_identity_t<pointer> p) noexcept; constexpr unique_ptr(type_identity_t<pointer> p, /* 见描述 */ d1) noexcept; constexpr unique_ptr(type_identity_t<pointer> p, /* 见描述 */ d2) noexcept; constexpr unique_ptr(unique_ptr&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; template<class U, class E> constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept; // 析构函数 constexpr ~unique_ptr(); // 赋值操作 constexpr unique_ptr& operator=(unique_ptr&& u) noexcept; template<class U, class E> constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; constexpr unique_ptr& operator=(nullptr_t) noexcept; // 观察器 constexpr add_lvalue_reference_t<T> operator*() const noexcept(/* 见描述 */); constexpr pointer operator->() const noexcept; constexpr pointer get() const noexcept; constexpr deleter_type& get_deleter() noexcept; constexpr const deleter_type& get_deleter() const noexcept; constexpr explicit operator bool() const noexcept; // 修改器 constexpr pointer release() noexcept; constexpr void reset(pointer p = pointer()) noexcept; constexpr void swap(unique_ptr& u) noexcept; // 禁用左值拷贝 unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; template<class T, class D> class unique_ptr<T[], D> { public: using pointer = /* 见描述 */; using element_type = T; using deleter_type = D; // 构造函数 constexpr unique_ptr() noexcept; template<class U> constexpr explicit unique_ptr(U p) noexcept; template<class U> constexpr unique_ptr(U p, /* 见描述 */ d) noexcept; template<class U> constexpr unique_ptr(U p, /* 见描述 */ d) noexcept; constexpr unique_ptr(unique_ptr&& u) noexcept; template<class U, class E> constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; // 析构函数 constexpr ~unique_ptr(); // 赋值操作 constexpr unique_ptr& operator=(unique_ptr&& u) noexcept; template<class U, class E> constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; constexpr unique_ptr& operator=(nullptr_t) noexcept; // 观察器 constexpr T& operator[](size_t i) const; constexpr pointer get() const noexcept; constexpr deleter_type& get_deleter() noexcept; constexpr const deleter_type& get_deleter() const noexcept; constexpr explicit operator <span class="
类 std::bad_weak_ptr
namespace std { class bad_weak_ptr : public exception { public: // 特殊成员函数的规范说明 const char* what() const noexcept override; }; }
namespace std { template<class T> class shared_ptr { public: using element_type = remove_extent_t<T>; using weak_type = weak_ptr<T>; // 构造函数 constexpr shared_ptr() noexcept; constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { } template<class Y> explicit shared_ptr(Y* p); template<class Y, class D> shared_ptr(Y* p, D d); template<class Y, class D, class A> shared_ptr(Y* p, D d, A a); template<class D> shared_ptr(nullptr_t p, D d); template<class D, class A> shared_ptr(nullptr_t p, D d, A a); template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept; shared_ptr(const shared_ptr& r) noexcept; template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept; shared_ptr(shared_ptr&& r) noexcept; template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept; template<class Y> explicit shared_ptr(const weak_ptr<Y>& r); template<class Y, class D> shared_ptr(unique_ptr<Y, D>&& r); // 析构函数 ~shared_ptr(); // 赋值操作 shared_ptr& operator=(const shared_ptr& r) noexcept; template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept; shared_ptr& operator=(shared_ptr&& r) noexcept; template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept; template<class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r); // 修改器 void swap(shared_ptr& r) noexcept; void reset() noexcept; template<class Y> void reset(Y* p); template<class Y, class D> void reset(Y* p, D d); template<class Y, class D, class A> void reset(Y* p, D d, A a); // 观察器 element_type* get() const noexcept; T& operator*() const noexcept; T* operator->() const noexcept; element_type& operator[](ptrdiff_t i) const; long use_count() const noexcept; explicit operator bool() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept; size_t owner_hash() const noexcept; template<class U> bool owner_equal(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_equal(const weak_ptr<U>& b) const noexcept</span
类模板 std::weak_ptr
namespace std { template<class T> class weak_ptr { public: using element_type = remove_extent_t<T>; // 构造函数 constexpr weak_ptr() noexcept; template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept; weak_ptr(const weak_ptr& r) noexcept; template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept; weak_ptr(weak_ptr&& r) noexcept; template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept; // 析构函数 ~weak_ptr(); // 赋值操作 weak_ptr& operator=(const weak_ptr& r) noexcept; template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept; template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept; weak_ptr& operator=(weak_ptr&& r) noexcept; template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept; // 修改器 void swap(weak_ptr& r) noexcept; void reset() noexcept; // 观察器 long use_count() const noexcept; bool expired() const noexcept; shared_ptr<T> lock() const noexcept; template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept; size_t owner_hash() const noexcept; template<class U> bool owner_equal(const shared_ptr<U>& b) const noexcept; template<class U> bool owner_equal(const weak_ptr<U>& b) const noexcept; }; template<class T> weak_ptr(shared_ptr<T>) -> weak_ptr<T>; }
类模板 std::owner_less
namespace std { template<class T = void> struct owner_less; template<class T> struct owner_less<shared_ptr<T>> { bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept; }; template<class T> struct owner_less<weak_ptr<T>> { bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept; bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept; }; template<> struct owner_less<void> { template<class T, class U> bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept; using is_transparent = /* 未指定 */; }; }
类 std::owner_hash
namespace std { struct owner_hash { template<class T> size_t operator()(const shared_ptr<T>&) const noexcept; template<class T> size_t operator()(const weak_ptr<T>&) const noexcept; using is_transparent = /* 未指定 */; }; }
类 std::owner_equal
namespace std { struct owner_equal { template<class T, class U> bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept; template<class T, class U> bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept; using is_transparent = /* 未指定 */; }; }
namespace std { template<class T> class enable_shared_from_this { protected: constexpr enable_shared_from_this() noexcept; enable_shared_from_this(const enable_shared_from_this&) noexcept; enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept; ~enable_shared_from_this(); public: shared_ptr<T> shared_from_this(); shared_ptr<T const> shared_from_this() const; weak_ptr<T> weak_from_this() noexcept; weak_ptr<T const> weak_from_this() const noexcept; private: mutable weak_ptr<T> /*weak-this*/; // 仅用于说明 }; }
namespace std { template<class T> struct atomic<shared_ptr<T>> { using value_type = shared_ptr<T>; static constexpr bool is_always_lock_free = /* 由实现定义 */; bool is_lock_free() const noexcept; void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept; operator shared_ptr<T>() const noexcept; shared_ptr<T> exchange(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; constexpr atomic() noexcept = default; atomic(shared_ptr<T> desired) noexcept; atomic(const atomic&) = delete; void operator=(const atomic&) = delete; void operator=(shared_ptr<T> desired) noexcept; private: shared_ptr<T> p; // 仅用于说明 }; }
类模板 std::atomic 针对 std::weak_ptr 的特化
namespace std { template<class T> struct atomic<weak_ptr<T>> { using value_type = weak_ptr<T>; static constexpr bool is_always_lock_free = /* 实现定义 */; bool is_lock_free() const noexcept; void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept; operator weak_ptr<T>() const noexcept; weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order success, memory_order failure) noexcept; bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept; constexpr atomic() noexcept = default; atomic(weak_ptr<T> desired) noexcept; atomic(const atomic&) = delete; void operator=(const atomic&) = delete; void operator=(weak_ptr<T> desired) noexcept; private: weak_ptr<T> p; // 仅用于说明 }; }
类模板 std:: out_ptr_t
namespace std { template<class Smart, class Pointer, class... Args> class out_ptr_t { public: explicit out_ptr_t(Smart&, Args...); out_ptr_t(const out_ptr_t&) = delete; ~out_ptr_t(); operator Pointer*() const noexcept; operator void**() const noexcept; private: Smart& s; // 仅用于说明 tuple<Args...> a; // 仅用于说明 Pointer p; // 仅用于说明 }; }
类模板 std:: inout_ptr_t
namespace std { template<class Smart, class Pointer, class... Args> class inout_ptr_t { public: explicit inout_ptr_t(Smart&, Args...); inout_ptr_t(const inout_ptr_t&) = delete; ~inout_ptr_t(); operator Pointer*() const noexcept; operator void**() const noexcept; private: Smart& s; // 仅用于说明 tuple<Args...> a; // 仅用于说明 Pointer p; // 仅用于说明 }; }
类模板 std :: indirect
namespace std { template<class T, class Allocator = allocator<T>> class indirect { public: using value_type = T; using allocator_type = Allocator; using pointer = typename allocator_traits<Allocator>::pointer; using const_pointer = typename allocator_traits<Allocator>::const_pointer; // 构造函数 constexpr explicit indirect(); constexpr explicit indirect(allocator_arg_t, const Allocator& a); constexpr indirect(const indirect& other); constexpr indirect(allocator_arg_t, const Allocator& a, const indirect& other); constexpr indirect(indirect&& other) noexcept; constexpr indirect(allocator_arg_t, const Allocator& a, indirect&& other) noexcept(/* 见描述 */); template<class U = T> constexpr explicit indirect(U&& u); template<class U = T> constexpr explicit indirect(allocator_arg_t, const Allocator& a, U&& u); template<class... Us> constexpr explicit indirect(in_place_t, Us&&... us); template<class... Us> constexpr explicit indirect(allocator_arg_t, const Allocator& a, in_place_t, Us&&... us); template<class I, class... Us> constexpr explicit indirect(in_place_t, initializer_list<I> ilist, Us&&... us); template<class I, class... Us> constexpr explicit indirect(allocator_arg_t, const Allocator& a, in_place_t, initializer_list<I> ilist, Us&&... us); // 析构函数 constexpr ~indirect(); // 赋值操作 constexpr indirect& operator=(const indirect& other); constexpr indirect& operator=(indirect&& other) noexcept(/* 见描述 */); template<class U = T> constexpr indirect& operator=(U&& u); // 观察器 constexpr const T& operator*() const& noexcept; constexpr T& operator*() & noexcept; constexpr const T&& operator*() const&& noexcept; constexpr T&& operator*() && noexcept; constexpr const_pointer operator->() const noexcept; constexpr pointer operator->() noexcept; constexpr bool valueless_after_move() const noexcept; constexpr allocator_type get_allocator() const noexcept; // 交换 constexpr void swap(indirect& other) noexcept(/* 见描述 */); friend constexpr void swap(indirect& lhs, indirect& rhs) noexcept(/* 见描述 */); // 关系运算符 template<class U, class AA> friend constexpr bool operator==( const indirect& lhs, const indirect<U, AA>& rhs) noexcept(/* 见描述 */); template<class U, class AA> friend constexpr auto operator<=>(const indirect& lhs, const indirect<U, AA>& rhs) -> /*synth-three-way-result*/<T, U>; // 与 T 的比较 template<class U> friend constexpr bool operator==(const indirect& lhs, const U& rhs) noexcept(/* 见描述 */<span class="
类模板 std :: polymorphic
namespace std { template<class T, class Allocator = allocator<T>> class polymorphic { public: using value_type = T; using allocator_type = Allocator; using pointer = typename allocator_traits<Allocator>::pointer; using const_pointer = typename allocator_traits<Allocator>::const_pointer; // 构造函数 constexpr explicit polymorphic(); constexpr explicit polymorphic(allocator_arg_t, const Allocator& a); constexpr polymorphic(const polymorphic& other); constexpr polymorphic(allocator_arg_t, const Allocator& a, const polymorphic& other); constexpr polymorphic(polymorphic&& other) noexcept; constexpr polymorphic(allocator_arg_t, const Allocator& a, polymorphic&& other) noexcept(/* 见描述 */); template<class U = T> constexpr explicit polymorphic(U&& u); template<class U = T> constexpr explicit polymorphic(allocator_arg_t, const Allocator& a, U&& u); template<class U, class... Ts> constexpr explicit polymorphic(in_place_type_t<U>, Ts&&... ts); template<class U, class... Ts> constexpr explicit polymorphic(allocator_arg_t, const Allocator& a, in_place_type_t<U>, Ts&&... ts); template<class U, class I, class... Us> constexpr explicit polymorphic(in_place_type_t<U>, initializer_list<I> ilist, Us&&... us); template<class U, class I, class... Us> constexpr explicit polymorphic(allocator_arg_t, const Allocator& a, in_place_type_t<U>, initializer_list<I> ilist, Us&&... us); // 析构函数 constexpr ~polymorphic(); // 赋值操作 constexpr polymorphic& operator=(const polymorphic& other); constexpr polymorphic& operator=(polymorphic&& other) noexcept(/* 见描述 */); // 观察器 constexpr const T& operator*() const noexcept; constexpr T& operator*() noexcept; constexpr const_pointer operator->() const noexcept; constexpr pointer operator->() noexcept; constexpr bool valueless_after_move() const noexcept; constexpr allocator_type get_allocator() const noexcept; // 交换 constexpr void swap(polymorphic& other) noexcept(/* 见描述 */); friend constexpr void swap(polymorphic& lhs, polymorphic& rhs) noexcept(/* 见描述 */); private: Allocator /*alloc*/ = Allocator(); // 仅用于说明 }; }