Namespaces
Variants

erf, erff, erfl

From cppreference.net
< c ‎ | numeric ‎ | math
Common mathematical functions
Functions
Basic operations
(C99)
(C99)
(C99)
(C99) (C99) (C99) (C23)
Maximum/minimum operations
Exponential functions
Power functions
Trigonometric and hyperbolic functions
Nearest integer floating-point
(C99) (C99) (C99)
(C23) (C23) (C23) (C23)
Floating-point manipulation
Narrowing operations
(C23)
(C23)
(C23)
(C23)
(C23)
(C23)
Quantum and quantum exponent
Decimal re-encoding functions
Total order and payload functions
Classification
Error and gamma functions
erf
(C99)
(C99)
(C99)
(C99)
Types
Macro constants
Special floating-point values
Arguments and return values
Error handling
Fast operation indicators
定义于头文件 <math.h>
float erff ( float arg ) ;
(1) (C99 起)
double erf ( double arg ) ;
(2) (C99 起)
long double erfl ( long double arg ) ;
(3) (C99 起)
定义于头文件 <tgmath.h>
#define erf( arg )
(4) (C99 起)
1-3) 计算 arg 误差函数
4) 类型泛型宏:若 arg 具有 long double 类型,则调用 erfl 。否则,若 arg 具有整数类型或 double 类型,则调用 erf 。否则调用 erff

目录

参数

arg - 浮点数值

返回值

If no errors occur, value of the error function of arg , that is
2
π
arg
0
e -t 2
d t
, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is
2*arg
π
, is returned.

错误处理

错误报告方式遵循 math_errhandling 中的规范。

如果实现支持 IEEE 浮点算术 (IEC 60559),

  • 若参数为 ±0,则返回 ±0
  • 若参数为 ±∞,则返回 ±1
  • 若参数为 NaN,则返回 NaN

注释

| arg | < DBL_MIN * ( sqrt ( π ) / 2 ) 时,保证会发生下溢。

erf(
x
σ 2
) is the probability that a measurement whose errors are subject to a normal distribution with standard deviation σ is less than x away from the mean value.

示例

#include <math.h>
#include <stdio.h>
double phi(double x1, double x2)
{
    return (erf(x2 / sqrt(2)) - erf(x1 / sqrt(2))) / 2;
}
int main(void)
{
    puts("normal variate probabilities:");
    for (int n = -4; n < 4; ++n)
        printf("[%2d:%2d]: %5.2f%%\n", n, n + 1, 100 * phi(n, n + 1));
    puts("special values:");
    printf("erf(-0) = %f\n", erf(-0.0));
    printf("erf(Inf) = %f\n", erf(INFINITY));
}

输出:

normal variate probabilities:
[-4:-3]:  0.13%
[-3:-2]:  2.14%
[-2:-1]: 13.59%
[-1: 0]: 34.13%
[ 0: 1]: 34.13%
[ 1: 2]: 13.59%
[ 2: 3]:  2.14%
[ 3: 4]:  0.13%
special values:
erf(-0) = -0.000000
erf(Inf) = 1.000000

参考文献

  • C11 标准 (ISO/IEC 9899:2011):
  • 7.12.8.1 erf 函数 (p: 249)
  • 7.25 泛型数学 <tgmath.h> (p: 373-375)
  • F.10.5.1 erf 函数 (p: 525)
  • C99标准(ISO/IEC 9899:1999):
  • 7.12.8.1 erf函数(第230页)
  • 7.22 泛型数学 <tgmath.h>(第335-337页)
  • F.9.5.1 erf函数(第462页)

参阅

(C99) (C99) (C99)
计算互补误差函数
(函数)
C++ 文档 关于 erf

外部链接

魏斯坦, 埃里克·W. "误差函数." 摘自 MathWorld —— 一个 Wolfram 网络资源。