std::ranges:: find_last, std::ranges:: find_last_if, std::ranges:: find_last_if_not
|
定义于头文件
<algorithm>
|
||
|
调用签名
|
||
| (1) | ||
|
template
<
std::
forward_iterator
I,
std::
sentinel_for
<
I
>
S,
class
T,
|
(C++23 起)
(C++26 前) |
|
|
template
<
std::
forward_iterator
I,
std::
sentinel_for
<
I
>
S,
class
Proj
=
std::
identity
,
|
(C++26 起) | |
| (2) | ||
|
template
<
ranges::
forward_range
R,
class
T,
|
(C++23 起)
(C++26 前) |
|
|
template
<
ranges::
forward_range
R,
class
Proj
=
std::
identity
,
|
(C++26 起) | |
|
template
<
std::
forward_iterator
I,
std::
sentinel_for
<
I
>
S,
class
Proj
=
std::
identity
,
|
(3) | (C++23 起) |
|
template
<
ranges::
forward_range
R,
class
Proj
=
std::
identity
,
|
返回范围
[
first
,
last
)
中满足特定条件的最后一个元素:
find_last
搜索与
value
相等的元素。
find_last_if
在范围
[
first
,
last
)
中搜索最后一个使谓词
pred
返回
true
的元素。
find_last_if_not
在范围
[
first
,
last
)
中搜索最后一个使谓词
pred
返回
false
的元素。
本页面描述的函数式实体是 算法函数对象 (非正式称为 niebloids ),即:
目录 |
参数
| first, last | - | 定义待检验元素范围的 区间 的迭代器-哨位对 |
| r | - | 待检验元素的范围 |
| value | - | 用于与元素比较的值 |
| pred | - | 应用于投影元素的谓词 |
| proj | - | 应用于元素的投影 |
返回值
[
first
,
last
)
中满足
E
为
true
的最后一个迭代器。
复杂度
最多 last - first 次谓词和投影函数的应用。
注释
ranges::find_last
、
ranges::find_last_if
、
ranges::find_last_if_not
在常见实现中具有更高效率,前提是
I
满足
bidirectional_iterator
或(更优)
random_access_iterator
概念。
| 功能测试 宏 | 值 | 标准 | 功能 |
|---|---|---|---|
__cpp_lib_ranges_find_last
|
202207L
|
(C++23) |
ranges::find_last
,
ranges::find_last_if
,
ranges::find_last_if_not
|
__cpp_lib_algorithm_default_value_type
|
202403L
|
(C++26) | 列表初始化 用于算法 ( 1,2 ) |
可能的实现
这些实现仅展示当
I
建模为
forward_iterator
时所使用的较慢算法。
| find_last (1,2) |
|---|
struct find_last_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected<I, Proj>, const T*> constexpr ranges::subrange<I> operator()(I first, S last, const T &value, Proj proj = {}) const { // 注意:若 I 仅为前向迭代器,我们只能从起始遍历到末尾 std::optional<I> found; for (; first != last; ++first) if (std::invoke(proj, *first) == value) found = first; if (!found) return {first, first}; return {*found, std::ranges::next(*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, const T &value, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } }; inline constexpr find_last_fn find_last; |
| find_last_if (3,4) |
struct find_last_if_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // 注意:若 I 仅为前向迭代器,我们只能从起始遍历到末尾 std::optional<I> found; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) found = first; if (!found) return {first, first}; return {*found, std::ranges::next(*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()<span class=" |
示例
#include <algorithm> #include <cassert> #include <forward_list> #include <iomanip> #include <iostream> #include <string_view> int main() { namespace ranges = std::ranges; constexpr static auto v = {1, 2, 3, 1, 2, 3, 1, 2}; { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), 3); constexpr auto i2 = ranges::find_last(v, 3); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), -3); constexpr auto i2 = ranges::find_last(v, -3); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } auto abs = [](int x) { return x < 0 ? -x : x; }; { auto pred = [](int x) { return x == 3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == -3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } { auto pred = [](int x) { return x == 1 or x == 2; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == 1 or x == 2 or x
参见
|
(C++20)
|
在特定范围中查找元素的最后序列
(算法函数对象) |
|
(C++20)
(C++20)
(C++20)
|
查找满足特定条件的首个元素
(算法函数对象) |
|
(C++20)
|
搜索元素范围的首次出现
(算法函数对象) |
|
(C++20)
|
若一个序列是另一个序列的子序列则返回
true
(算法函数对象) |
|
(C++20)
|
判断元素是否存在于部分有序范围中
(算法函数对象) |
|
(C++23)
(C++23)
|
检查范围是否包含给定元素或子范围
(算法函数对象) |