Namespaces
Variants

std::ranges:: next_permutation, std::ranges:: next_permutation_result

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
定义于头文件 <algorithm>
调用签名
template < std:: bidirectional_iterator I, std:: sentinel_for < I > S,

class Comp = ranges:: less , class Proj = std:: identity >
requires std:: sortable < I, Comp, Proj >
constexpr next_permutation_result < I >

next_permutation ( I first, S last, Comp comp = { } , Proj proj = { } ) ;
(1) (C++20 起)
template < ranges:: bidirectional_range R, class Comp = ranges:: less ,

class Proj = std:: identity >
requires std:: sortable < ranges:: iterator_t < R > , Comp, Proj >
constexpr next_permutation_result < ranges:: borrowed_iterator_t < R >>

next_permutation ( R && r, Comp comp = { } , Proj proj = { } ) ;
(2) (C++20 起)
辅助类型
template < class I >
using next_permutation_result = ranges:: in_found_result < I > ;
(3) (C++20 起)
1) 将范围 [ first , last ) 转换为按字典序排列的下一个 排列 ,其中所有排列的集合根据二元比较函数对象 comp 和投影函数对象 proj 进行排序。若存在这样的“下一个排列”,则返回 { last, true } ;否则将范围转换为字典序首排列(操作等效于 ranges:: sort ( first, last, comp, proj ) ),并返回 { last, false }
2) (1) 相同,但使用 r 作为源范围,如同使用 ranges:: begin ( r ) 作为 first ,并使用 ranges:: end ( r ) 作为 last

本页面描述的函数式实体是 算法函数对象 (非正式称为 niebloids ),即:

目录

参数

first, last - 定义待 排列 元素范围的迭代器-哨位对
r - 排列 元素的 range
comp - 比较 FunctionObject ,当第一个参数 小于 第二个参数时返回 true
proj - 应用于元素的投影

返回值

1) ranges :: next_permutation_result < I > { last, true } 当新排列按字典序 大于 原排列时。 ranges :: next_permutation_result < I > { last, false } 当达到最后一个排列且范围已被重置为首个排列时。
2) (1) 相同,但返回类型为 ranges :: next_permutation_result < ranges:: borrowed_iterator_t < R >>

异常

任何从迭代器操作或元素交换抛出的异常。

复杂度

最多进行 N / 2 次交换,其中 N 在情况 (1) 中为 ranges:: distance ( first, last ) ,在情况 (2) 中为 ranges:: distance ( r ) 。在整个排列序列中平均计算,典型实现每次调用约使用 3 次比较和 1.5 次交换。

注释

实现(例如 MSVC STL )可在迭代器类型满足 contiguous_iterator 概念且交换其值类型时既不调用非平凡特殊成员函数、也不通过 ADL 查找 swap 时启用向量化优化。

可能的实现

struct next_permutation_fn
{
    template<std::bidirectional_iterator I, std::sentinel_for<I> S,
             class Comp = ranges::less, class Proj = std::identity>
    requires std::sortable<I, Comp, Proj>
    constexpr ranges::next_permutation_result<I>
        operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        // 检查序列是否至少包含两个元素
        if (first == last)
            return {std::move(first), false};
        I i_last{ranges::next(first, last)};
        I i{i_last};
        if (first == --i)
            return {std::move(i_last), false};
        // 主“排列”循环
        for (;;)
        {
            I i1{i};
            if (std::invoke(comp, std::invoke(proj, *--i), std::invoke(proj, *i1)))
            {
                I j{i_last};
                while (!std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *--j)))
                {}
                std::iter_swap(i, j);
                std::reverse(i1, i_last);
                return {std::move(i_last), true};
            }
            // 排列“空间”已耗尽
            if (i == first)
            {
                std::reverse(first, i_last);
                return {std::move(i_last), false};
            }
        }
    }
    template<ranges::bidirectional_range R, class Comp = ranges::less,
             class Proj = std::identity>
    requires std::sortable<ranges::iterator_t<R>, Comp, Proj>
    constexpr ranges::next_permutation_result<ranges::borrowed_iterator_t<R>>
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::move(comp), std::move(proj));
    }
};
inline constexpr next_permutation_fn next_permutation {};

示例

#include <algorithm>
#include <array>
#include <compare>
#include <functional>
#include <iostream>
#include <string>
struct S
{
    char c;
    int i;
    auto operator<=>(const S&) const = default;
    friend std::ostream& operator<<(std::ostream& os, const S& s)
    {
        return os << "{'" << s.c << "', " << s.i << "}";
    }
};
auto print = [](auto const& v, char term = ' ')
{
    std::cout << "{ ";
    for (const auto& e : v)
        std::cout << e << ' ';
    std::cout << '}' << term;
};
int main()
{
    std::cout << "Generate all permutations (iterators case):\n";
    std::string s{"abc"};
    do
    {
        print(s);
    }
    while (std::ranges::next_permutation(s.begin(), s.end()).found);
    std::cout << "\n" "Generate all permutations (range case):\n";
    std::array a{'a', 'b', 'c'};
    do
    {
        print(a);
    }
    while (std::ranges::next_permutation(a).found);
    std::cout << "\n" "Generate all permutations using comparator:\n";
    using namespace std::literals;
    std::array z{"█"s, "▄"s, "▁"s};
    do
    {
        print(z);
    }
    while (std::ranges::next_permutation(z, std::greater()).found);
    std::cout << "\n" "Generate all permutations using projection:\n";
    std::array<S, 3> r{S{'A',3}, S{'B',2}, S{'C',1}};
    do
    {
        print(r, '\n');
    }
    while (std::ranges::next_permutation(r, {}, &S::c).found);
}

输出:

生成所有排列(迭代器情况):
{ a b c } { a c b } { b a c } { b c a } { c a b } { c b a }
生成所有排列(范围情况):
{ a b c } { a c b } { b a c } { b c a } { c a b } { c b a }
使用比较器生成所有排列:
{ █ ▄ ▁ } { █ ▁ ▄ } { ▄ █ ▁ } { ▄ ▁ █ } { ▁ █ ▄ } { ▁ ▄ █ }
使用投影生成所有排列:
{ {'A', 3} {'B', 2} {'C', 1} }
{ {'A', 3} {'C', 1} {'B', 2} }
{ {'B', 2} {'A', 3} {'C', 1} }
{ {'B', 2} {'C', 1} {'A', 3} }
{ {'C', 1} {'A', 3} {'B', 2} }
{ {'C', 1} {'B', 2} {'A', 3} }

参见

生成元素范围的下一个较小字典序排列
(算法函数对象)
判断序列是否为另一序列的排列
(算法函数对象)
生成元素范围的下一个较大字典序排列
(函数模板)
生成元素范围的下一个较小字典序排列
(函数模板)
判断序列是否为另一序列的排列
(函数模板)