Namespaces
Variants

std::ranges:: count, std::ranges:: count_if

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
定义于头文件 <algorithm>
调用签名
(1)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class T, class Proj = std:: identity >
requires std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T * >
constexpr std:: iter_difference_t < I >

count ( I first, S last, const T & value, Proj proj = { } ) ;
(C++20 起)
(C++26 前)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T = std :: projected_value_t < I, Proj > >
requires std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T * >
constexpr std:: iter_difference_t < I >

count ( I first, S last, const T & value, Proj proj = { } ) ;
(C++26 起)
(2)
template < ranges:: input_range R, class T, class Proj = std:: identity >

requires std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T * >
constexpr ranges:: range_difference_t < R >

count ( R && r, const T & value, Proj proj = { } ) ;
(C++20 起)
(C++26 前)
template < ranges:: input_range R, class Proj = std:: identity ,

class T = std :: projected_value_t < ranges:: iterator_t < R > , Proj > >
requires std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T * >
constexpr ranges:: range_difference_t < R >

count ( R && r, const T & value, Proj proj = { } ) ;
(C++26 起)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
constexpr std:: iter_difference_t < I >

count_if ( I first, S last, Pred pred, Proj proj = { } ) ;
(3) (C++20 起)

返回范围内 [ first , last ) 满足特定条件的元素数量。

1) 统计等于 value 的元素数量。
3) 统计谓词 p 返回 true 的元素数量。
2,4) (1,3) 相同,但使用 r 作为源范围,如同使用 ranges:: begin ( r ) 作为 first ,以及 ranges:: end ( r ) 作为 last

本页面描述的函数式实体是 算法函数对象 (非正式称为 niebloids ),即:

目录

参数

first, last - 定义待检查元素范围的 迭代器-哨位
r - 待检查元素的范围
value - 要搜索的值
pred - 应用于投影元素的谓词
proj - 应用于元素的投影

返回值

满足条件的元素数量。

复杂度

恰好进行 last - first 次比较和投影操作。

注释

对于不包含任何附加条件的范围内元素数量,请参阅 std::ranges::distance

功能测试 标准 功能
__cpp_lib_algorithm_default_value_type 202403 (C++26) 列表初始化 用于算法 ( 1,2 )

可能的实现

count (1)
struct count_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>>
    requires std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<I, Proj>, const T*>
    constexpr std::iter_difference_t<I>
        operator()(I first, S last, const T& value, Proj proj = {}) const
    {
        std::iter_difference_t<I> counter = 0;
        for (; first != last; ++first)
            if (std::invoke(proj, *first) == value)
                ++counter;
        return counter;
    }
    template<ranges::input_range R, class Proj = std::identity
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
    requires std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<ranges::iterator_t<R>, Proj>,
                                            const T*>
    constexpr ranges::range_difference_t<R>
        operator()(R&& r, const T& value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj));
    }
};
inline constexpr count_fn count;
count_if (3)
struct count_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr std::iter_difference_t<I>
        operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        std::iter_difference_t<I> counter = 0;
        for (; first != last; ++first)
            if (std::invoke(pred, std::invoke(proj, *first)))
                ++counter;
        return counter;
    }
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>> Pred>
    constexpr ranges::range_difference_t<R>
        operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::ref(pred), std::ref(proj));
    }
};
inline constexpr count_if_fn count_if;

示例

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <vector>
int main()
{
    std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10};
    namespace ranges = std::ranges;
    // 确定 std::vector 中有多少整数匹配目标值
    int target1 = 3;
    int target2 = 5;
    int num_items1 = ranges::count(v.begin(), v.end(), target1);
    int num_items2 = ranges::count(v, target2);
    std::cout << "number: " << target1 << " count: " << num_items1 << '\n';
    std::cout << "number: " << target2 << " count: " << num_items2 << '\n';
    // 使用 lambda 表达式统计能被 3 整除的元素
    int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){ return i % 3 == 0; });
    std::cout << "number divisible by three: " << num_items3 << '\n';
    // 使用 lambda 表达式统计能被 11 整除的元素
    int num_items11 = ranges::count_if(v, [](int i){ return i % 11 == 0; });
    std::cout << "number divisible by eleven: " << num_items11 << '\n';
    std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}};
    #ifdef __cpp_lib_algorithm_default_value_type
        auto c = ranges::count(nums, {4, 2});
    #else
        auto c = ranges::count(nums, std::complex<double>{4, 2});
    #endif
    assert(c == 2);
}

输出:

number: 3 count: 2
number: 5 count: 0
number divisible by three: 3
number divisible by eleven: 0

参见

返回迭代器与哨位之间的距离,或范围的起始与末尾之间的距离
(算法函数对象)
通过迭代器和计数创建子范围
(定制点对象)
由满足谓词的 range 元素组成的 view
(类模板) (范围适配器对象)
返回满足特定条件的元素数量
(函数模板)